Query complexity and local search problems

Vsevolod Oparin

St. Petersburg University of Russian Academy of Science

June 22, 2013

Vsevolod Oparin 1/9 | Query complexity and local search problems

▶ ∢ ≣ ▶

Type of problem

Let D be a domain and $f: D \rightarrow O$ be a function.

- The Respondeer knows a word $x \in D$.
- The goal of the Questioneer is to find f(x).

Questioneer can ask some type of questions.

The function f can be replaced by a relation $R \subseteq D \times O$. So the goal of the Questioneer is to find $y \in O$ s.t. R(x, y).

Example

Guess the Number!

Problem

Let D be a set of n-bit strigns s.t. $D = \{1^k 0^{n-k} \mid 0 \le k \le n\}$ and f(x) = number of 1 in x. The Questioneer is allowed to make request for the value of any bit of x. The goal is to find f(x) in the minimal number of questions.

Theorem

The number of questions is $\Theta(\log n)$.

(1日) (1日) (1日)

The alhabet is
$$\Sigma = \{ \nearrow, \uparrow, \nwarrow, \leftarrow, \swarrow, \downarrow, \searrow, \rightarrow \}$$

Constraints

- Every arrow on the border points inside.
- Every two neughbouring arrows differ in at most 45°.

母▶ 《 臣 ▶

Theorem

There is always at least one contradiction.

Theorem

There is the strategy which allows to find a contradiction in O(n) queries.

< 同 > < 三 > <

Theorem

In worst-case, every strategy makes $\Omega(n)$ queries.

Adversary technique

We provide the strategy for the respondeer which allows to build a hard example for any deterministic algorithm.

< □→ < □→ < □→

(日) (圖) (臣) (臣)

æ

イロト イポト イヨト イヨ

æ

Any questions?

▲□▶ ▲圖▶ ▲圖▶ ▲圖

э