
Separating Hierarchical and General Hub
Labelings

Andrew V. Goldberg1 Ilya Razenshteyn2 Ruslan Savchenko3

1Microsoft Research Silicon Valley
2CSAIL, MIT

3Moscow State University

June 23, 2013



Overview

Preliminaries

Tight Bound for HHL

An O(2.83d) HL

HL Bound



Shortest Paths with Preprocessing

Definition (Shortest Path Problem)

Given a graph and two vertices find a shortest path between them.
Sometimes only distance is required.

Definition (Shortest Paths with Preprocessing)

At preprocessing time algorithm prepares some data. In query time
algorithm uses the prepared data.

Shortest paths with preprocessing may give sublinear query time.



Labeling Approach

Definition (Labels, Journal of Graph Theory’00 D. Peleg)

I For each vertex v , preprocessing computes a label L(v).

I The u, v distance is computed only from L(u) and L(v)
(without using the graph).

Definition (Hub Labels (HL), SODA’02 Cohen et al.)

I Label L(v) is a set of pairs (u, dist(v , u)).

I Cover property: ∀u, v , L(u) ∩ L(v) contains a vertex on the
shortest u − v path.



Hub Labels Query

I Query s, t distance

I Look at L(s)

I Look at L(t)

I By definition shortest s, t path contains
common hub

I Look at L(s) ∩ L(t)

I Common hub v with the smallest
dist(s, v) + dist(v , t) is the right one

I Query time is O(|L(s)|+ |L(t)|).
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General and Hierarchical Hub Labels

I SODA’02 Cohen et al.
O(log n) approximation for the total size of labels by
reduction to the set cover.
O(n4) time.

I ESA’12 Abraham et al.
Hierarchical labels: there is an order on vertices and each
vertex has only more important nodes in its label.
O∗(nm) time.

I Hierarchical labels are easier to compute, but is the label size
good compared to general ones?

Goal: compare general (HL) vs hierarchical (HHL) hub labels.
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Hypercubes

Definition (Hypercube)

A graph H with vertex set {0, 1}d where vertices are adjacent iff
their IDs differ in exactly one bit is called (binary) hypercube.

Sometimes we interpret vertex IDs as subsets of {1, . . . , d}.

000 001 = {3}

011 = {2, 3}010

101

111 = {1, 2, 3}

100

110



Our Contribution

We present tight bounds for both HHL and HL on hypercubes.
It follows that that HHL can be polynomially bigger than HL.



Overview

Preliminaries

Tight Bound for HHL

An O(2.83d) HL

HL Bound



An HHL of size 3d

I Treat vertex IDs as subsets of {1, . . . , d}.
I A vertex w is in L(v) iff w ⊆ v .

I For u, v we have u ∩ v both in L(u) and L(v) and it is on the
shortest u − v path.

I Labeling is HHL (order vertices by decreasing their IDs).

I Labeling size is
d∑

i=0

2i
(

d

i

)
= 3d .



Canonical HHL

I For v ,w the induced hypercube Hvw is the subgraph induced
by vertices on all v − w shortest paths.

v
w

= 0100110010
= 0100101110︸︷︷︸

arbitrary in Hvw

I For a fixed order of vertices v1, v2, . . . , vn , define a canonical
labeling: w is in L(v) iff w is the maximum vertex of Hvw .

I This is the minimum HHL with respect to the vertex order.

I The previous labeling of size 3d is canonical.



Canonical HHL Size Independence

Theorem
The size of a canonical labeling is independent of the vertex order.

Proof:

I Suppose we transpose vi and vi+1.

I L(w) changes only if vi ∈ Hvi+1w or vi+1 ∈ Hviw , and vi+1 is
the most important in Hvi+1w or Hviw respectively.

I Consider b : H 7→ H, b flips bits in which vi and vi+1 differ.

I Claim: vi+1 is removed from L(w) iff vi is added to L(b(w)).



Canonical HHL Size Independence

I If vi+1 is removed from L(w), then vi ∈ Hvi+1w and vi+1 is the
maximum in Hvi+1w .

I From vi ∈ Hvi+1w : vi coincides with vi+1 in the positions in
which vi+1 and w coincide. So in the latter positions vi+1, w ,
b(vi+1) and b(w) coincide (since b doesn’t touch them).

w

vi+1

vi
︸ ︷︷ ︸
Hvi+1w b flips

I We have Hvi+1w = Hb(vi+1)b(w) = Hvib(w). First, vi+1 is the
maximum vertex, then it is vi . So vi is added to L(b(w)).
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Simple HL for Hypercubes

I Labeling: w ∈ L(v) iff the first bd/2c or last dd/2e bits of w
are identical to those of v .

I For s,t common hub has first bits from s and last from t.

I It is non-hierarchical since w ∈ L(v) implies v ∈ L(w).

I Its size is O(2
3
2
d) = O(2.83d).

I This implies that optimal HL for hypercubes are polynomially
smaller than HHL.
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Labeling as a Set Cover

I The labeling problem is a special case of SET-COVER
(SODA’02 Cohen et al.).

I Unordered pairs of vertices are covered by packs of shortes
paths with a common hub.

I Cost is the number of endpoints.

v
S



ILP Formulation

I For a vertex v and a subset of vertices S variable xv ,S equals
to one iff S is the set of vertices whose labels contain v .

I ILP for labeling:

min
∑

v ,S

|S | · xv ,S subject to




xv ,S ∈ {0, 1} ∀ v ∈ {0, 1}d , S ⊆ {0, 1}d∑
S⊇{i ,j}
v∈Hij

xv ,S ≥ 1 ∀ {i , j} ⊆ {0, 1}d (ILP)

I We denote the optimal value of (ILP) by OPT.



LP Relaxation

I LP-relaxation of (ILP):

min
∑

v ,S

|S | · xv ,S subject to




xv ,S ≥ 0 ∀ v ∈ {0, 1}d ,S ⊆ {0, 1}d∑
S⊇{i ,j}
v∈Hij

xv ,S ≥ 1 ∀ {i , j} ⊆ {0, 1}d (P)

I We denote the optimal value of (P) by LOPT,

I It is known that LOPT ≤ OPT ≤ O(d) · LOPT.



Dual LP

I Dual program to (P).

max
∑

{i ,j}

y{i ,j} subject to




y{i ,j} ≥ 0 ∀ {i , j} ⊆ {0, 1}d∑
{i ,j}⊆S
Hij3v

y{i ,j} ≤ |S | ∀v ∈ {0, 1}d ,S ⊆ {0, 1}d (DP)

I The dual problem is a packing problem.

I LOPT is also the optimal solution value for (DP).



Regular Dual LP

I We require the values y{i ,j} depend only on the dist(i , j).

I We get variables ỹ0, ỹ1, . . . , ỹd .

I Let Nk denote the number of vertex pairs at distance k .

I Regular program:

max
∑

k

Nk · ỹk subject to



ỹk ≥ 0 ∀ 0 ≤ k ≤ d∑
{i ,j}⊆S
Hij30d

ỹdist(i ,j) ≤ |S | ∀S ⊆ {0, 1}d (RP)

I Denote optimal value by ROPT. Clearly ROPT ≤ LOPT.



ROPT ≥ LOPT

Lemma
ROPT ≥ LOPT.

To prove it we show that if y{i ,j} is feasible for (DP) then

ỹk =

∑
{i ,j}:dist(i ,j)=k y{i ,j}

Nk

is feasible for (RP).



Reduction to single ỹk

I So far we’ve seen that:
I LOPT ≤ OPT ≤ O(d) · LOPT
I LOPT = ROPT

I Let ỹ∗k denote the maximum feasible value of ỹk .
Since ROPT = max

∑
k Nk · ỹk , it’s clear that

maxk Nk ỹ∗k ≤ ROPT ≤ (d + 1) ·maxk Nk ỹ∗k .

I Next we find ỹ∗k and then maxk Nk ỹ∗k .
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Central Graphs Gk

I Define graphs Gk : vertices are the same, two vertices are
adjacent iff there is a shortest path of length k between them
that passes through 0d .

I For any subgraph (S ,E ) of Gk , ỹ∗k is smaller than |S |/|E |,
since ỹk · |E | =

∑
{i ,j}∈E ỹk ≤

∑
{i ,j}⊆S ,Hij30d ỹdist(i ,j) ≤ |S |.

I Let C i
k denote the component with sets of cardinality i (here

vertices are interpreted as subsets of {1, . . . , d}).

I C i
k density is

(d
i

)
·
(d−i
k−i
)
/(
(d
i

)
+
( d
k−i
)
).

000 001

011010

101

111

100

110

000 011

110

100

010 001

G2

C0
2

C1
2

101



Regular Graph Densest Subgraph

Lemma
In a regular graph, density of any subgraph does not exceed the
density of the graph.
In a regular bipartite graph (i.e., degrees of each part are uniform),
the density of any subgraph does not exceed the density of the
graph.



Max Density of Gk

Lemma
For fixed d and k with k ≤ d, the minimum of the expression
(
(d
x

)
+
( d
k−x
)
)/
(d
x

)
·
(d−x
k−x
)

is achieved for x = bk/2c and
x = dk/2e (with the two values being equal).



Final Steps

We have

ỹ∗k =





1 k = 0

2/
(d−i

i

)
k = 2i , i > 0((d

i

)
+
( d
i+1

))
/
((d

i

)
·
(d−i
i+1

))
k = 2i + 1.

Now we need to find the maximum value of ψ(k) := Nk · ỹ∗k =

= 2d ·
{(d

2i

)
/
(d−i

i

)
k = 2i

( d
2i+1

)
·
((d

i

)
+
( d
i+1

))
/
(

2 ·
(d
i

)
·
(d−i
i+1

))
k = 2i + 1.

We show maxk Nk · ỹ∗k = (2.5 + o(1))d .
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HL Bound

Theorem
Optimal value for HL on d-dimensional hypercube is (2.5 + o(1))d .



Concluding Remarks

I We show a polynomial gap between the sizes of HL and
HHL on hypercubes.

I Our proof for (2.5 + o(1))d -size HL is non-constructive, but
Cohen et al. algorithm can build such labels.

I Explicit (2.5 + o(1))d -size HL construction is an open
question.



Thank You!

Questions?
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