On the zero-one k-law and its extensions

M.E. Zhukovskii

MIPT, MSU, Yandex

Moscow 21 june 2013

Zero-one k-law and extensions

M.E. Zhukovskii

Random graph G(N, p)

$$\Omega_N = \{ (V = \{1, ..., N\}, E) \}, \ \mathcal{F}_N = 2^{\Omega_N},$$

$$\mathsf{P}_{N,p}(G) = p^{|E|} (1-p)^{C_N^2 - |E|}.$$

< ∃ >

æ

Random graph G(N, p)

$$\Omega_N = \{ (V = \{1, ..., N\}, E) \}, \ \mathcal{F}_N = 2^{\Omega_N},$$

$$\mathsf{P}_{N,p}(G) = p^{|E|} (1-p)^{C_N^2 - |E|}.$$

First-order formulae relational symbols $\sim, =;$ logical connectivities $\neg, \Rightarrow, \Leftrightarrow, \lor, \land;$ variables $x, y, x_1, ...;$ quantifiers \forall, \exists .

$$\mathsf{Example:} \quad \forall x \, \forall y \ (\neg(x=y) \Rightarrow (x \sim y)).$$

 \mathcal{L} – a set of first-order properties.

G — an arbitrary graph; L_G — a property of containing G. If $p \gg p_0 = N^{-1/\rho^{\max}(G)}$ then $\lim_{N \to \infty} \mathsf{P}_{N,p}(L_G) = 1.$ If $p \ll p_0 = N^{-1/\rho^{\max(G)}}$ then $\lim_{N \to \infty} \mathsf{P}_{N,p}(L_G) = 0.$ $N^{-1/\rho^{\max}(G)}$ — threshold function. L_G is the first order property.

$$\rho^{\max}(G) = \max_{H \subseteq G} \{\rho(H)\}, \ \rho(H) = \frac{e(H)}{v(H)}$$

5 K 6 5 K 5

 $\begin{array}{l} G - \text{an arbitrary graph; } L_G - \text{a property of containing } G.\\ \text{If } p \gg p_0 = N^{-1/\rho^{\max}(G)} \text{ then}\\ \\ \lim_{N \to \infty} \mathsf{P}_{N,p}(L_G) = 1.\\ \text{If } p \ll p_0 = N^{-1/\rho^{\max}(G)} \text{ then}\\ \\ \\ \lim_{N \to \infty} \mathsf{P}_{N,p}(L_G) = 0.\\ N^{-1/\rho^{\max}(G)} - \text{threshold function.} \end{array}$

 L_G is the first order property.

$$\rho^{\max}(G) = \max_{H \subseteq G} \{\rho(H)\}, \ \rho(H) = \frac{e(H)}{v(H)}$$

L(k) — a property of a graph to have chromatic number k. There is no threshold function for L(k). L(k) is the second order property.

•
$$p: \mathbb{N} \to [0, 1].$$

The random graph obeys zero-one law if $\forall L \in \mathcal{L}$ one of the following properties hold

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 0, \quad \lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 1.$$

 \mathcal{P} is a set of functions p such that G(N,p) obeys zero-one law.

•
$$p: \mathbb{N} \to [0, 1].$$

The random graph obeys zero-one law if $\forall L \in \mathcal{L}$ one of the following properties hold

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 0, \quad \lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 1.$$

 \mathcal{P} is a set of functions p such that G(N,p) obeys zero-one law.

• p = const;

•
$$p: \mathbb{N} \to [0, 1].$$

The random graph obeys zero-one law if $\forall L \in \mathcal{L}$ one of the following properties hold

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 0, \quad \lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 1.$$

 ${\mathcal P}$ is a set of functions p such that G(N,p) obeys zero-one law.

•
$$p = \text{const};$$

•
$$\forall \alpha > 0 \quad \min\{p, 1-p\} N^{\alpha} \to \infty$$
 when $N \to \infty$;

•
$$p: \mathbb{N} \to [0, 1].$$

The random graph obeys zero-one law if $\forall L \in \mathcal{L}$ one of the following properties hold

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 0, \quad \lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 1.$$

 ${\mathcal P}$ is a set of functions p such that G(N,p) obeys zero-one law.

- p = const;
- $\forall \alpha > 0 \quad \min\{p, 1-p\} N^{\alpha} \to \infty \text{ when } N \to \infty;$

•
$$p = N^{-\alpha}, \, \alpha \in (0, 1];$$

•
$$p: \mathbb{N} \to [0, 1].$$

The random graph obeys zero-one law if $\forall L \in \mathcal{L}$ one of the following properties hold

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 0, \quad \lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) = 1.$$

 ${\mathcal P}$ is a set of functions p such that G(N,p) obeys zero-one law.

- p = const;
- $\forall \alpha > 0 \quad \min\{p, 1-p\} N^{\alpha} \to \infty \text{ when } N \to \infty;$
- $p=N^{-\alpha},\,\alpha\in(0,1];$
- other cases.

Theorem [Y.V. Glebskii, D.I. Kogan, M.I. Liogonkii, V.A. Talanov, 1969; R. Fagin, 1976]

If $\min\{p, 1-p\}N^{\alpha} \to \infty$ when $N \to \infty$ for all $\alpha > 0$ then $p \in \mathcal{P}$.

Theorem [Y.V. Glebskii, D.I. Kogan, M.I. Liogonkii, V.A. Talanov, 1969; R. Fagin, 1976]

If $\min\{p, 1-p\}N^{\alpha} \to \infty$ when $N \to \infty$ for all $\alpha > 0$ then $p \in \mathcal{P}$.

Theorem [J.H. Spencer, S. Shelah, 1988]

Let
$$p = N^{-\alpha}$$
, $\alpha \in (0, 1]$.

- If $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then $p \in \mathcal{P}$.
- If $\alpha \in \mathbb{Q}$ then $p \notin \mathcal{P}$.

In the first statement α can be replaced with $\alpha + o(1)$.

Theorem [J.H. Spencer, S. Shelah, 1988]

Let p = p(N) be a function for which one of the following conditions holds:

• $N^{-1-1/l} \ll p \ll N^{-1-1/(l+1)}$ for some natural number l,

•
$$p \ll N^{-1}$$
 but $p = N^{-1-o(1)}$

• $p \gg N^{-1}$ but $p = N^{-1+o(1)}$ and for every given pair of integers r and s such that $s \ge r-1 \ge 0$ we have either $rNp - \log N - s \log \log N \to -\infty$ or $rNp - \log N - s \log \log N \to \infty$.

Then zero-one law holds.

 \mathcal{L}_k — a class of first-order properties defined by formulae with quantifier depth bounded by k.

The random graph G(N,p) obeys zero-one k-law if $\forall L \in \mathcal{L}_k$

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) \in \{0,1\}.$$

 \mathcal{P}_k — class of functions p = p(N) such that the random graph G(N, p) obeys zero-one k-law.

 \mathcal{L}_k — a class of first-order properties defined by formulae with quantifier depth bounded by k.

The random graph G(N,p) obeys zero-one k-law if $\forall L \in \mathcal{L}_k$

$$\lim_{N \to \infty} \mathsf{P}_{N,p(N)}(L) \in \{0,1\}.$$

 \mathcal{P}_k — class of functions p = p(N) such that the random graph G(N, p) obeys zero-one k-law.

Example: $(\forall x \exists y \ (x \sim y)) \land (\forall x \exists y \ \neg(x \sim y));$ $\forall x \exists y \exists z \ ((x \sim y) \land (\neg(x \sim z))).$ \mathcal{L}_k^{∞} — a class of first-order properties defined by formulae with quantifier depth bounded by k, number of disjunctions and conjunctions can be infinite.

The random graph G(N, p) obeys zero-one k-law with infinite sentences if $\forall L \in \mathcal{L}_k^{\infty}$ $\lim_{N \to \infty} \mathsf{P}_{N, p(N)}(L) \in \{0, 1\}.$ $\mathcal{P}_k^{\infty} - \text{a class of functions } p = p(N) \text{ such that the random graph}$ G(N, p) obeys zero-one k-law with infinite sentences.

Theorem [M. McArthur, 1997]

 $\begin{array}{l} \text{Let } p=N^{-\alpha},\,k\in\mathbb{N},\,k\geq 2.\\ \bullet \text{ If } 0<\alpha<\frac{1}{k-1} \text{ then } p\in\mathcal{P}_k^\infty.\\ \bullet \text{ If } \alpha=\frac{1}{k-1} \quad \text{ then } p\notin\mathcal{P}_k^\infty. \end{array}$

▲ 臣 ▶ ▲ 臣 ▶ = = ∽ ९ ୯ ୯

Theorem [M. McArthur, 1997]

 $\begin{array}{l} \text{Let } p=N^{-\alpha},\,k\in\mathbb{N},\,k\geq 2.\\ \bullet \text{ If } 0<\alpha<\frac{1}{k-1} \text{ then } p\in\mathcal{P}_k^\infty.\\ \bullet \text{ If } \alpha=\frac{1}{k-1} \quad \text{ then } p\notin\mathcal{P}_k^\infty. \end{array}$

Theorem 1 (zero-one k-law), 2010

Let $p = N^{-\alpha}$, $k \in \mathbb{N}$, $k \ge 3$. • If $0 < \alpha < \frac{1}{k-2}$ then $p \in \mathcal{P}_k$. • If $\alpha = \frac{1}{k-2}$ then $p \notin \mathcal{P}_k$.

E ► E • 9 Q (>

Theorem [M. McArthur, 1997]

 $\begin{array}{l} \text{Let } p=N^{-\alpha},\,k\in\mathbb{N},\,k\geq 2.\\ \bullet \text{ If } 0<\alpha<\frac{1}{k-1} \text{ then } p\in\mathcal{P}_k^\infty.\\ \bullet \text{ If } \alpha=\frac{1}{k-1} \quad \text{ then } p\notin\mathcal{P}_k^\infty. \end{array}$

Theorem 1 (zero-one k-law), 2010

Let
$$p = N^{-\alpha}$$
, $k \in \mathbb{N}$, $k \ge 3$.
• If $0 < \alpha < \frac{1}{k-2}$ then $p \in \mathcal{P}_k$.
• If $\alpha = \frac{1}{k-2}$ then $p \notin \mathcal{P}_k$.

Theorem 2 (convergence k-law), 2012

Let
$$p = N^{-\alpha}$$
, $\alpha = \frac{1}{k-2}$, $k \in \mathbb{N}$, $k \ge 3$.
For any $L \in \mathcal{L}_k$ there exists $\lim_{N \to \infty} \mathsf{P}_{N,p}(L)$.

590

Theorem 3, 2012

Let
$$p = N^{-\alpha}$$
, $k \in \mathbb{N}$, $k \ge 4$, $\mathcal{Q} = \{\frac{a}{b}, a, b \in \mathbb{N}, a \le 2^{k-1}\}$

• If $1 - \frac{1}{2^{k-1}} < \alpha < 1$, $\alpha \notin \mathcal{Q}$ then $p \in \mathcal{P}_k$.

▶ ★ 臣 ▶ ★ 臣 ▶ = 臣 • • • • • • •

Theorem 3, 2012

Let
$$p = N^{-\alpha}$$
, $k \in \mathbb{N}$, $k \ge 4$, $\mathcal{Q} = \{\frac{a}{b}, a, b \in \mathbb{N}, a \le 2^{k-1}\}$
• If $1 - \frac{1}{2^{k-1}} < \alpha < 1$, $\alpha \notin \mathcal{Q}$ then $p \in \mathcal{P}_k$.

$$\left(1 - \frac{1}{2^{k}}, 1\right) \bigcup \left(1 - \frac{1}{2^{k} - 1}, 1 - \frac{1}{2^{k}}\right) \bigcup \dots \bigcup$$
$$\left(1 - \frac{1}{2^{k-1} + 2^{k-2}}, 1 - \frac{1}{2^{k-1} + 2^{k-2} + 1}\right) \bigcup$$
$$\left(1 - \frac{1}{2^{k-1} + \frac{2^{k-1} - 1}{2}}, 1 - \frac{1}{2^{k-1} + 2^{k-2}}\right) \bigcup \dots \bigcup$$
$$\left(1 - \frac{1}{2^{k-1} + \frac{2^{k-1}}{3}}, 1 - \frac{1}{2^{k-1} + \frac{2^{k-1} - \left[\frac{2^{k-1}}{3}\right]}{2}}\right) \bigcup \dots \bigcup$$

M.E. Zhukovskii Zero-one k-law and extensions

< □ > < 同

(本語)) (本語))

3

Theorem 4, 2012

Let $p = N^{-\alpha}, k \in \mathbb{N}, k \ge 4$.

• $\exists b_0(k) > 0 \ (b > b_0(k), 0 < a < b, \alpha = \frac{a}{b} \Rightarrow p \in \mathcal{P}_k).$

▶ ★ 臣 ▶ ★ 臣 ▶ ○臣 ○ � � �

Theorem 4, 2012

Let $p = N^{-\alpha}, k \in \mathbb{N}$, $k \ge 4$.

• $\exists b_0(k) > 0$ $(b > b_0(k), 0 < a < b, \alpha = \frac{a}{b} \Rightarrow p \in \mathcal{P}_k).$

Theorem 5, 2013

Let
$$k \in \mathbb{N}$$
, $k > 3$, $\tilde{\mathcal{Q}} = \{1, ..., 2^{k-1} - 2\}$.
• $\alpha = 1 - \frac{1}{2^{k-1} + \beta}$, $\beta \in \tilde{\mathcal{Q}} \Rightarrow p \notin \mathcal{P}_k$.

M.E. Zhukovskii Zero-one k-law and extensions

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs

k — number of rounds

G, H — two graphs k — number of rounds

G, H — two graphs k — number of rounds

Theorem [A. Ehrenfeucht, 1960]

Let G, H be two graphs. For any first-order property L expressed by formula with quantifier depth bounded by a number k $G \in L \Leftrightarrow H \in L$ if and only if Duplicator has a winning strategy in the game $\mathsf{EHR}(G, H, k)$.

Example: $\exists x_1 \exists x_2 \exists x_3 \ ((x_1 \sim x_2) \land (x_2 \sim x_3) \land (x_1 \sim x_3)).$

Theorem [A. Ehrenfeucht, 1960]

Let G, H be two graphs. For any first-order property L expressed by formula with quantifier depth bounded by a number k $G \in L \Leftrightarrow H \in L$ if and only if Duplicator has a winning strategy in the game $\mathsf{EHR}(G, H, k)$.

Example: $\exists x_1 \exists x_2 \exists x_3 \ ((x_1 \sim x_2) \land (x_2 \sim x_3) \land (x_1 \sim x_3)).$

Theorem [A. Ehrenfeucht, 1960]

Let G, H be two graphs. For any first-order property L expressed by formula with quantifier depth bounded by a number k $G \in L \Leftrightarrow H \in L$ if and only if Duplicator has a winning strategy in the game $\mathsf{EHR}(G, H, k)$.

Example: $\exists x_1 \exists x_2 \exists x_3 \ ((x_1 \sim x_2) \land (x_2 \sim x_3) \land (x_1 \sim x_3)).$

Corollary 1

- The zero-one law holds if and only if for any $k \in \mathbb{N}$ almost surely Duplicator has a winning strategy in the Ehrenfeucht game on k rounds.
- The random graph G(N,p) obeys zero-one k-law if and only if almost surely Duplicator has a winning strategy in the Ehrenfeucht game on k rounds.

Corollary 1

- The zero-one law holds if and only if for any $k \in \mathbb{N}$ almost surely Duplicator has a winning strategy in the Ehrenfeucht game on k rounds.
- The random graph G(N,p) obeys zero-one k-law if and only if almost surely Duplicator has a winning strategy in the Ehrenfeucht game on k rounds.

Corollary 2

Let $\widetilde{\Omega}_N = \bigsqcup_{i=1}^s \Omega_N^i$, $\mathsf{P}_{N,p}(\widetilde{\Omega}_N) \to 1$, $N \to \infty$. Let for any $N, M \in \mathbb{N}$, $i \in \{1, ..., s\}$, $G \in \Omega_N^i$, $H \in \Omega_M^i$ Duplicator have a winning strategy in the game $\mathsf{EHR}(G, H, k)$. Then the convergence k-law holds. The full level s extension property S(s)

$$\forall a, b \in \mathbb{Z}_+, a+b \le s, v_1, \dots, v_a, u_1, \dots, u_b \in V \\ \exists x \in V \ (x \sim v_1) \land \dots \land (x \sim v_a) \land (\neg((x \sim u_1) \land \dots \land (x \sim u_b)))$$

• If for graphs G, H the full level k-1 extension property holds then Duplicator has a winning strategy in the game $\mathsf{EHR}(G, H, k).$

The full level s extension property S(s)

$$\forall a, b \in \mathbb{Z}_+, a+b \le s, v_1, \dots, v_a, u_1, \dots, u_b \in V \\ \exists x \in V \ (x \sim v_1) \land \dots \land (x \sim v_a) \land (\neg((x \sim u_1) \land \dots \land (x \sim u_b)))$$

• If for graphs G, H the full level k-1 extension property holds then Duplicator has a winning strategy in the game $\mathsf{EHR}(G,H,k)$.

Proof

If $p = N^{-\alpha}$, $0 < \alpha < 1/(k-1)$, then for rather large N a probability of the full level k-1 extension property is greater than

$$1 - C_N^{k-1} (1 - p^a (1 - p)^b)^{N-k+1} > 1 - N^{k-1} \exp(-N^{\alpha(k-1)}(N-k)) \to 1.$$

The full level s extension property S(s)

$$\forall a, b \in \mathbb{Z}_+, a+b \le s, v_1, \dots, v_a, u_1, \dots, u_b \in V \\ \exists x \in V \ (x \sim v_1) \land \dots \land (x \sim v_a) \land (\neg((x \sim u_1) \land \dots \land (x \sim u_b)))$$

• If for graphs G, H the full level k-1 extension property holds then Duplicator has a winning strategy in the game $\mathsf{EHR}(G, H, k)$.

Proof

If $p = N^{-\alpha}$, $0 < \alpha < 1/(k-1)$, then for rather large N a probability of the full level k-1 extension property is greater than

$$1 - C_N^{k-1} (1 - p^a (1 - p)^b)^{N-k+1} > 1 - N^{k-1} \exp(-N^{\alpha(k-1)}(N-k)) \to 1.$$

Zero-one k-law holds.

G contains an isomorphic copy X of this graph, $G \setminus X$ doesn't contain any vertex x adjacent to two vertices of X in G.

G contains an isomorphic copy *X* of this graph, $G \setminus X$ doesn't contain any vertex *x* adjacent to two vertices of *X* in *G*. Probability of such property tends to $\xi \in (0, 1)$.

H doesn't contain a copy of any of these graphs.

H doesn't contain a copy of any of these graphs. Probability of such property for rather large N greater than $\frac{1}{4}$.

H doesn't contain a copy of any of these graphs. Probability of such property for rather large N greater than $\frac{1}{4}$. For rather large N Duplicator doesn't have a winning strategy with probability greater than $\frac{\xi}{4}$.

 $G(N, N^{-13/14})$ doesn't contain a copy of this graph with probability tending to $\xi \in (0, 1)$. Let G contain $X_1 \cup X_2$, H don't contain $X_1 \cup X_2$.

D. chooses y_1 , but H doesn't contain (X_1, x) -extensions of y_1 . a = -9 and b = -9

 $G(N, N^{-13/14})$ doesn't contain a copy of this graph with probability tending to $\xi \in (0, 1)$. Let G contain $X_1 \cup X_2$, H don't contain $X_1 \cup X_2$.

 $G(N, N^{-13/14})$ doesn't contain a copy of this graph with probability tending to $\xi \in (0, 1)$. Let G contain $X_1 \cup X_2$, H don't contain $X_1 \cup X_2$.

D. chooses y_3 .

18/19

M.E. Zhukovskii Zero-one k-law and extensions

 $G(N, N^{-13/14})$ doesn't contain a copy of this graph with probability tending to $\xi \in (0, 1)$. Let G contain $X_1 \cup X_2$, H don't contain $X_1 \cup X_2$.

D. chooses y_4 and S. wins.

Thank you!

M.E. Zhukovskii Zero-one k-law and extensions

▶ ★ 문 ▶ ★ 문 ▶ ... 문