Collaborative Systems

Andre Scedrov

University of Pennsylvania, USA

Collaborative Systems

To Share or not to Share

Examples: Administrative tasks, protocols

« Agents collaborate to achieve some common goal.
* No intruder can enter the system.
« However, an agent does not completely trust any other agent.

» Therefore, while collaborating, an agent might not want some
confidential information to be leaked.

Agenda

Local State Transition Systems

m Fresh Values

® Progressing Collaborative Systems

® Bounded Memory Adversary

® Timed Collaborative Systems

Collaborative Systems [Kanovich, Rowe, and Scedrov]

Model (LSTS)
« FOL signature

 Configurations are multisets of facts:
{Nurse(Tom, id1, blood), Nurse(Sam, id2, blood)}

» Actions are rewrite rules: Nurse(X, Y, blood) — Nurse(blank, Y, blood)

Lab(id, blood) — Lab(id, testResults)

 Goals are multisets of facts:
{Doctor(testResults, Tom)}

- Critical configurations are configurations that have to be avoided

{Lab(testResults, Tom)} {Nurse(Tom, id1, blood), Nurse(Sam, id1, blood)}

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

The planning problem

Plan compliance: Is there a plan from an initial configuration to a configuration
containing a goal such that no critical configuration is reached along the plan?

Medical scenario: the test results of a patient should not be publicly leaked with
the patient's name.

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

The planning problem

Plan compliance: Is there a plan from an initial configuration to a configuration
containing a goal such that no critical configuration is reached along the plan?

Medical scenario: the test results of a patient should not be publicly leaked with
the patient's name.

Assumption

Balanced actions, that is, actions
that have the same number of facts
In their pre and post conditions.

Along a plan, states have the same
number of facts (intuitively, agents
have collectively a bounded
memory): different from the
Dolev-Yao intruder.

(Closed Room)

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

The planning problem

Plan compliance: Is there a plan from an initial configuration to a configuration
containing a goal such that no critical configuration is reached along the plan?

Medical scenario: the test results of a patient should not be publicly leaked with

the patient's name.

Assumption

Balanced actions, that is, actions
that have the same number of facts
In their pre and post conditions.

Along a plan, states have the same
number of facts (intuitively, agents
have collectively a bounded
memory): different from the
Dolev-Yao intruder.

(Closed Room)

Complexity Results

Balanced actions:

PSPACE-complete

Not necessarily balanced actions:

Undecidable

Systems with balanced actions

Problem

 Although checking for the existence of plan is in PSPACE, it turns
out that to write down the entire plan may require exponential
space because the plan might be exponentially long.

Systems with balanced actions

Problem
out that to write down the entire plan may require exponential
space because the plan might be exponentially long.

e The solution given in CSF'07 was by scheduling a plan in
PSPACE.

 Although checking for the existence of plan is in PSPACE, it turns

10

Systems with balanced actions

Problem

out that to write down the entire plan may require exponential
space because the plan might be exponentially long.
* The solution given in CSF'07 was by scheduling a plan in
PSPACE.

Example: Towers of Hanoi

Clear(x) On(z,y) Clear(z) S(x,z) — Clear(x) Clear(y) On(z, z) S(z, 2)

Given n disks plans must be of exponential length 2" — 1, at least.

 Although checking for the existence of plan is in PSPACE, it turns

11

PSPACE Upper Bound

* Must check both goal reachability and policy compliance.

* Rely on a non-deterministic algorithm which can be determinized
by Savitch's Theorem.

e Also use the fact that PSPACE = COPSPACE.

12

PSPACE Upper Bound

Some Assumptions
e All actions are balanced.

e There are three functions, C, G, and T, which run in polynomial
space and.:

« C(Z) = 1if Zis a critical configuration, and C(Z) = 0, otherwise,
« G(Z) =11if Zis a goal configuration, and G(Z) = 0, otherwise;
e T(a) = 1 if ' 1s a valid transition, and T(a) = 0, otherwise.

* Let W/ be the initial configuration.

13

PSPACE Upper Bound

Algorithm

» Use non-determinism to “guess” a compliant plan leading to a
goal configuration

if G(Z) = 1,
 Recording one step at a time, this is done in polynomial
space;

» Goal reachability and plan compliance are check
simultaneously in this algorithm

- Each intermediate configuration Z must check if C(Z) = 1 and

14

PSPACE Upper Bound

Algorithm

- Initialize Z,= Wand | = 0,
- If C(Z)) = 1, output no;

- If G(Z)) = 1, output yes;

e Otherwise use non-determinism to “guess” a compliant plan
leading to a goal configuration. By using 7, guess an action o
applicable to Z resulting in the configuration Z*;

e Set Z . =Zand|:=i+1,
* Repeat.

Record one step at a time, this can be done in polynomial space.

15

Agenda

B Local State Transition Systems

® Fresh Values

m Progressing Collaborative Systems

® Bounded Memory Adversary

® Timed Collaborative Systems

16

New feature: fresh values [Kanovich, Ban Kirigin, Nigam, and Scedrov, FAST'10]

Motivation

New feature: fresh values [Kanovich, Ban Kirigin, Nigam, and Scedrov, FAST'10]

Motivation

Agents might need to create fresh values or nonces:

nurse(Tom, blank, blood) — 3 testNo.nurse(Tom, testNo, blood)

A
v
Each sample should
have a different
number assigned.

New feature: fresh values [Kanovich, Ban Kirigin, Nigam, and Scedrov, FAST'10]

Motivation

Agents might need to create fresh values or nonces:

nurse(Tom, blank, blood) — 3 testNo.nurse(Tom, testNo, blood)

A
v
Each sample should
have a different
number assigned.

Other examples:
e Opening a new bank account;

» changing a customer's password,;

e creating a transaction number or a case number.

Actions that create fresh values

nurse(Tom, blaAnk, blood) — 3 testNo.nurse(Tom, testANo, blood)

The fresh value uses the memory slot used previously by the
updated value.

20

Actions that create fresh values

nurse(Tom, blaAnk, blood) — 3 testNo.nurse(Tom, testANo, blood)

The fresh value uses the memory slot used previously by the
updated value.

Agents have a bounded memory even when they
can create fresh values.

21

Actions that create fresh values

nurse(Tom, blaAnk, blood) — 3 testNo.nurse(Tom, testANo, blood)

The fresh value uses the memory slot used previously by the
updated value.

Agents have a bounded memory even when they
can create fresh values.

— dn.A(n)

For example, whenever such an unbalanced rule Is used, it
requires an extra memory slot to store the nonce created. That is,
agents possess an unbounded memory.

22

Systems with balanced actions

Problem

 Although checking for the existence of plan is in PSPACE, it turns
out that to write down the entire plan may require exponential
space and exponentially many mutually distinct nonces.

Example: Towers of Hanol, suitably modified to have balanced
actions that always creates fresh values.

» To cope with this problem we use the fact that the number of
constants in a configuration is bounded. In particular, we will show
how to reuse obsolete constants instead of updating with fresh
constants.

23

Systems with balanced actions

Theorem: Given a local state transition system (LSTS) with
balanced actions that may create fresh values, any plan leading
from an initial configuration W to a partial goal Z can be
transformed into another plan also leading from W to Z that uses
only a polynomial number of nonces with respect to the number of
facts in the initial configuration and the upper bound on the size of
facts.

24

Proof outline

25

Proof outline

 The number of facts, m, of any configuration in a plan
does not change.

26

Proof outline

 The number of facts, m, of any configuration in a plan
does not change.

* We assume that the size of facts, k, is bounded, where
the size of facts is the number of symbols it contains.

P(z,y)| =3 |P(h(z,y),2)| =5

27

Proof outline

 The number of facts, m, of any configuration in a plan
does not change.

* We assume that the size of facts, k, is bounded, where
the size of facts is the number of symbols it contains.

P(z,y)| =3 |P(h(z,y),2)| =5

In any configuration there are at most mk
occurrences of constants.

28

Proof outline

Alpha-equivalence among configurations
inspired by a similar notion from logic

{A(tl, nl), B(’ng, nl), C(ng,, tg)}

{A(tl, 714), B(n5, n4), C(TLG, tg)}

29

Proof outline

Alpha-equivalence among configurations
inspired by a similar notion from logic

1A, m), B(nz, 1), C(ns, t2) }

{A(t1,n4), B(ns, n4), C(ng, t2)}

These configurations only differ in the names of the nonces
used. Intuitively, they represent the same information.

Proof outline

Observational equivalence among plans

31

Proof outline

Observational equivalence among plans

r(1)

Cl > C2

32

Proof outline

Observational equivalence among plans

r (1)
Cl > C2

-

Alpha-equivalent

Cl’

88

Proof outline

Observational equivalence among plans

r(7)
Cl > (C2
Alpha-equivalent
Y v
C1l (_)/) > (C2'

Where all nonces in C1' and C2' including the nonces 71’

are taken from a pre-defined set of 2mk nonces.

34

Systems with balanced actions

Theorem: Given an LSTS system with balanced actions
that can create fresh values, the plan compliance problem
IS PSPACE-complete.

85

Agenda

®m Local State Transition Systems

®m Fresh Values

Progressing Collaborative Systems

® Bounded Memory Adversary

® Timed Collaborative Systems

36

PI’OQI’ESSiI‘Ig Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,

FCS-PrivMod'10]

Progressing is inspired by the nature of security protocols,
as well as many administrative and business processes:
once one step of a protocol session iIs taken, the same
step Is not repeated.

Progressing Plans

A plan is progressing if an instance of an action appears at most
once.

Note that this implies that the length of progressing traces are of
polynomial due to the assumption of size of facts.

37

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
FCS-PrivMod'10]

This notion of progressing reflects the requirement that
progressing processes are efficient, as one needs to

consider only traces of polynomial length to check whether
a process can be completed or not.

For instance, it Is not possible to solve the Towers of Hanoi
problem with a progressing plan.

Complexity [FCS-Privmod'10]

Assuming that one can check in poly-time whether a state is an
Initial or goal state, then the reachability problem for progressing
plans is NP-complete when actions cannot create fresh values.

38

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,

new]

However, extending this notion of progressing to systems that
can create fresh values has turned out to be quite challenging.

One of the reasons is that with the current definition of
progressing, progressing plans do not have necessarily
polynomial length when one allows fresh values.

One can transform any problem into another problem whose
solution is progressing, even problems that require exponential
plans.

For instance, we can adapt the encoding of the Towers of
Hanol, so that each move creates a new nonce.

89

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,

new]

In order to extend the notion of progressing to the case
where actions may create nonces, we shouldn't allow
unbounded nonce generation. Instead we need to
somehow limit the use of nonces, but how many nonces is

enough?

For balanced systems, we know that it is enough to fix a
polynomial number of nonce names with respect to the upper
bound on the size of facts and the number of facts in the initial

configuration.

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,

new]

We extend the notion of alpha-equivalence to instances of actions.

Two instances, r1 and r2, of the same action are equivalent if there is a
bijection o that maps the set of all nonce names appearing in one

Instance to the set of all nonce names appearing in the other instance,
such that (r1 g) = r2.

X1(t1)X2(t2,t3,n1)X3(n1,n2) — X4(t1)X2(t2,$,TZ3)X5(TLAl,nA3)

vy VoYY

X1(t1)Xa(te,t3,n4)X3(ng,n5) — Xy(t1)Xa(t2, x,n6)X5(n4,n6)

41

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,

new]

We extend the definition of Progressing to plans containing nonces.

Given a balanced multiset rewrite system R whose actions may create
fresh values, an initial configuration W and a polynomial f(m,k), we say
that a sequence of actions is progressing if it contains at most f(m,k)
equivalent instances of any action, where m is the number of facts in
the configuration W and k is the upper bound on size of facts.

With this new definition, it is not possible to solve the modified Towers
of Hanoi problem using a progressing plan.

42

Progressing Collaborative Systems

Complexity [new]

Assuming that one can check in polynomial-time whether a state
IS an initial or goal state, then the reachability problem for
progressing plans is NP-complete when actions are balanced
and can create fresh values up to a polynomial number of times.

43

Summary of Results

Plan Compliance Problem

Progressing

Nonces are
not allowed :
Not necessarily
Progressing
Balanced
Actions Progressing
Nonces are
allowed

Not Necessarily
Progressing

Actions not necessarily balanced

NP-complete
[Kanovich et al. FCS-Privmod'10]

PSPACE-complete
[Kanovich et al. CSF'07]

NP-Complete

[new]

PSPACE-complete
[Kanovich et al., FAST'10]

Undecidable
[Kanovich et al., CSF'09]

44

Agenda

B Local State Transition Systems
m Fresh Values

m Progressing Collaborative Systems

m Bounded Memory Adversary

® Timed Collaborative Systems

45

Computer Security

Goal: protection of
computer systems and
digital information

Access control
OS security
Network security
= Cryptography

46

Protocol Security

= Cryptographic Protocol

* Program distributed over network

« Use cryptography to achieve goal
= Attacker

* Read, intercept, replace messages, and remember their contents
= Correctness

« Attacker cannot learn protected secret or cause incorrect protocol
completion

a7

Run of Protocol

Initiate Respond / |
/|

Correct if no security violation in any run.

48

Correctness vs Security

= Program or System Correctness
* Program satisfies specification
« For reasonable input, get reasonable output
= Program or System Security
* Program resists attack

« For unreasonable input, output not completely
disastrous

= Main differences
e Active interference from environment
« Refinement technigues may falil

49

Needham-Schroeder Key Exchange

B
v

{A, Nonce, } g,

{Nonce,, Noncep } k.

{Noncey } k,

>

B
v

Result: A and B share two private numbers

not known to any observer without K 2, K, -

50

Anomaly in Needham-Schroeder [Lowe]

{A7 Na}Ke

—————————————
{Na7 Nb}Ka
C————————

{No} k. A

Evil agent E tricks

honest A into revealing
private key N, from B.

Evil E can then fool B.

51

Dolev-Yao intruder, e.g., as formalized in MSR [CSFw'99]

52

Dolev-Yao intruder, e.g., as formalized in MSR [CSFwW'99]

Intercept/send messages:
Ng(x) = M (x)
M(z) — Ng(x)

Compose messages:

M(z), M(y) — M((z,y))

Decompose messages:

M((z,y)) = M(x), M(y)

Create nonces:

— dz.M(2)

Among other rules, e.g., rules involving encryption/decryption.

Some of these rules are not balanced. In particular, the intruder has an

unbounded memory, Ii.e., he can remember as many facts as he needs.

The secrecy/planning problem is undecidable.

58

Memory Bounded Dolev-Yao intruder

How much adversarial behavior can be done by some
Insiders in a collaborative system?

Since insiders have a bounded memory, we need to
consider a memory bounded Dolev-Yao intruder.

54

Memory Bounded Dolev-Yao intruder, sample rules

We use private facts of the form R(*) to denote a free memory slot
available only to the intruder and public facts of the form P(*) to
denote a memory slot available to all agents.

515

Memory Bounded Dolev-Yao intruder, sample rules

Intercept/send messages: Decompose messages:
R(x), Ns(z) = M(x), P(x) R(x), M((z,y)) = M(z), M(y)
P(x), M (x) — Ngr(x), R(*)
Compose messages: Create nonces:
M(z), M(y) — M((z,y)), R(x) R(x) = 3z.M(z2)
Intruder might need to forget information:

We use private facts of the form R(*) to denote a free memory slot
available only to the intruder and public facts of the form P(*) to
denote a memory slot available to all agents.

Memory Bounded Dolev-Yao intruder

Memory management

57

Memory Bounded Dolev-Yao intruder

Memory management

Protocol roles may be created/deleted while other protocols are running.
Q1(Z1) -+ Qn(Zn)P(x) = Q1(Z1) - - - Qn(Tpn) Ao ()
Well-founded theories [Cervesato et al., CSFW'99] prohibit this. They only

allow protocol roles to be created before any protocol runs take place.

Hence they only allow for a bounded number of roles if actions are
balanced.

58

PSPACE lower-bound using protocol theories

We rely upon the fact that NPSPACE = PSPACE.

We encode a deterministic Turing machine, TM, that accepts in space n?.

Assume w.l.0.g. that the machine has only one accepting configuration.

We encode TM by using two participants A and B. A initiates the protocol, while
B encodes the actions of the Turing machine M and also checks whether the
current state is the accepting configuration of TM.

Theorem: Let P(I,TM) be a protocol theory encoding TM with initial
configuration /. Let M be a balanced intruder theory. A run of theory
P(l,TM) + M can lead to a state containing M(secret) if and only if the
machine TM can reach the accepting configuration starting from /.

59

PSPACE lower-bound using protocol theories

Encoding TM's configurations as messages
<$ §1§2 .. gz .- '€n2 #7Q7Z> Oor <7_7 Q7Z>

$ and # mark the beginning and the end of the tape.
§j contains the symbol at the | position in the tape.
d is the state of TM.

1 is the position in the tape that TM is scanning.

We assume that no instruction leads TM to scan a position to the
left of $ or to the right of #.

60

PSPACE lower-bound using protocol theories

Normal Run

k)
k)
k)

A — B: (update,{(T,q,1)}
B—A: (done, {(1',q',i")
A— B: (check,{(7', ¢, 1)
B — A: result

In the first two actions, B executes the unique TM's instructions that changes the
state from g to q’, changing the contents of the tape, and /' =/ + 1 if the instruction
moves TM's head to the right, or i' =/ - 1 if the instruction moves TM's head to the
left, otherwise /"= .

In the last two actions, B checks whether q' is the accepting state is reached. If it
IS then result is the secret, otherwise result is no.

61

Anomaly

A— M — B:
B—M-—A:
A— M — B:
B—M-—A:

First Session of the Anomaly

<Updat€»{< Yoy 0) b k)
(done, { (1’ ,q, i) k)
(check,{(T",q",1") }1r)

result

Intruder Is the man in
the middle. He learns
the Initial state.

Later Sessions of the Anomaly

M(A) — B:
B — M(A):
M(A) — B:
B— M(A) :

(update, {
(done, { (T,
(check,{(T’,

result

/(7'

q,?

/

)}
)}
1)

k

k
}

)
)
k)

Intruder impersonates A.
After each session, the
message exchanged
encodes the next state
of the Turing machine.

62

Formally in our system:

Protocol Theory for A

ROLA: Guy(G, k)Init(I)P(x) -4 Guy(G, k)Init(I)Ao(L, k)

UPDA.: AO(X k)P(x) —a A1(X, k)Ngs({update, enc(k, X)))

CHKA: Ai(X,k)Ng({done,enc(k,Y))) —a A2(Y, k)Ns({check,enc(k,Y)))
RESA: As (X,) r(Res) —4 A3(X, Res, k)P(*)

ERASEA: A3(X, Res, k) —4 P(x)

63

Formally in our system:

Protocol Theory for B

ROLB: Guy(G, k)Secret(s)P(x) — Guy(G, k)Secret(s)By(k, s)

UPDB: Bo(k, s)Nr({update,enc(k, (xg, ..., Ti—1,&, Tit1s- -, Tp241,4,1))))
— B1(<£B0, ceey Li—15T) Lit1y- -5 241, q/7 7:/>7 k) S)
Ng({(done,enc(k, (xg, ..., Ti—1,7 Tit1y---sTn241,q ,7))))

CHKB: Bi(X,k,s)Ngr({check,enc(k, X))) — Ba2(X, k,s)Ng(result)

ERASEB: By(X,k,s) — P(x)

For each instruction in TM of the form:

€ —q'nD

there are n> UPDB rules where 0 < i < n“+1 is the position TM's head
and the action above denotes that “if in state g and looking at £ then
replace it by 77, move in the direction D and go to the state g".”

64

Memory Bounded Dolev-Yao intruder

Since all actions are balanced, the secrecy problem is PSPACE-complete.

This is one theoretical explanation of the successful use of
model-checkers in the verification of security protocols. Our PSPACE

upper bound can have some impact on practical aspects of protocol
verification.

65

Analysis of the intruder's memory for known anomalies

Protocol Ne€dnam- v aiom Otway-Rees LG

Schroeder Kerberos 5 PKINIT

No

intruder Facts: 9 Facts: 8 Facts: 8 Facts: 7 Facts: 15 Facts: 18

With Facts: 19 Facts: 15 Facts: 11/17 Facts: 8 Facts: 22/20 Facts: 31
Anomaly R(*): 7 R(*): 9 R(*): 5/9 R(*): 2 R(*): 9/4 R(*): 10

Size of
Facts

66

No Upper Bound for the Dolev-Yao's Memory

Some known anomalies can be carried out by the Bounded Memory
Dolev-Yao intruder if one gives him enough memory.

In particular, we considered all protocols to be bounded. That is, the
agents participating cannot remember an unbounded number of facts.
This is different from the setting in [Cervesato et al., CSFW'99]. In
particular, for bounded protocols there in only a bounded number
concurrent sessions.

67

No Upper Bound for the Dolev-Yao's Memory

This leads to the following question:
Is it possible to infer an upper-bound on the memory required by the
Standard Dolev-Yao adversary to carry out an anomaly from the
memory bound of the bounded protocol?

We answer this question negatively, confirming the hardness of protocol
verification.

68

Encoding Turing Machines

In particular, we provide a sound and faithful encoding of Turing Machines
using bounded memory protocols and the Standard Dolev-Yao adversary.

Assumptions (w.l.0.g.) about the machine M

* Only one tape, which is one-way unbounded to the right. The
leftmost cell (humbered by 0) contains the marker $ unerased,;

 The initial 3-cell configuration is of the following form, where B
stands for the blank symbol:

“ <Q1aB> E‘

e We assume that all instructions are “move”™ instructions. The head
of the machine cannot move to the leftmost cell marked with $.

* Only one accepting state qo

69

Encoding Turing Machines

We use assume to principal, Alice and Bob, which share a symmetric

key K;

Encoding of the Tape

« An unscanned cell that contains symbol &o is encoded by a
term encrypted with the key K;

EK(<t07 507 €0, t1>)

where ty and t; are nonces, and €o = 1, if the cell is the last cell
In a configuration.

* The cell that contains symbol & and is scanned by the machine
M in state ¢ Is also encoded by a term encrypted with the key K:

Ex({t1,(q,§),0,12))

70

Encoding Turing Machines

The nonces %o and ?1 are used as “timestamps” and to specify the
adjacency of cells.

Initial Configuration

<EK(<t07 $7 0, t1>)7 EK(<t17 <Q17 B>7 0, t2>)7 EK(<t27 B, 1, t3>)>

71

Encoding Turing Machines

Encoding Machine's Actions
Alice's Role — Alice iIs the Initiator and her initial state Is:

<EK(<t07 $7 0, t1>)7 EK(<t17 <Q7 B>7 0, t2>)7 EK(<t27 B, 17t3>)7 EK(<t47 B, 17t5>)>

Alice updates all nonces %; to t;;, and sends the following updated
message to Bob:

<EK(<t67 $707 t,1>)7 EK(<t,17 <q7 B>7 0, t/2>)7 EK(<t/27 B, 17t£’>>)7 EK(<tZL7 B, 17t,5>)>

Alice walts a response from Bob of the form:
(Ex ({to, @0,0,t1)), Ex ((t1, a1,0,t2)), Ex ((t2, o2, €2, t3)), Exc ((ta, B, 1,15)))

Alice checks whether 1 =t1 and t2 = to.

Moreover, if @; is of the form (qo, &) then, she releases the secret.

72

Encoding Turing Machines

Encoding Machine's Actions

Bob's Role — Bob transforms a message received with the help of an
Instruction from the given Turing machine. He expects a message of the form:

<EK(<t07§07 0’t1>)7 EK(({l? <Qa§>7 0,Z2>), EK(<t23£27 627t3>)7 EK(<t47 B, 17t5>)>

If{1 = %Vl and /52 = {9, then he performs one of the following three actions:

1) Extends the tape — if €2 = 1 Bob updates nonces t; to ¢ , and sends
the following updated message to Alice, which provides the chain of four cells
with an updated last cell:

(Ex ((to, 0,0,t1)), Ex ({t1, (4, £), 0,15)), Ex ((t5,£2,0,15)), Ex ((t5, B, 1,13)))

73

Encoding Turing Machines

Encoding Machine's Actions
Message received by Bob:

<EK(<t07€07 0, t1>)7 EK(({la <Q7§>7 07%\/2»7 EK(<t27 §2, 627t3>)7 EK(<t47 B, 17t5>)>

2) Moving the Head of the Machine to the Right — if e = (), for an
Instruction of the form

g€ —q'nR

Denoting “if in state 4 looking at symbol f replace it by 7], move the tape
head one cell to the right, and go into state 4 ”

Bob updates some nonces t; to t;;, and sends the following updated message
to Alice:

<EK(<th 507 07 t/1>)7 EK(<t/17 7, 07 t/2>)7 EK(<t,27 <q/7 €2>7 07 t3>)7 EK(<t47 B> 17 t5>)>

74

Encoding Turing Machines

Encoding Machine's Actions
Message received by Bob:

<EK(<t07€07 0, t1>)7 EK(({la <Q7§>7 07%\/2»7 EK(<t27 §2, 627t3>)7 EK(<t47 B, 17t5>)>

3) Moving the Head of the Machine to the Left —if €2 = 0 , for an
Instruction of the form

g€ —q'nL

Denoting “if in state 4 looking at symbol f replace it by 7], move the tape
head one cell to the left, and go into state G~

Bob updates some nonces t; to t;;, and sends the following updated message
to Alice:

<EK(<t07 <q/> €0>7 0, t/1>)7 EK(<t/17 n, 0, t/2>)7 EK(<t,27 §2,0, t3>)7 EK(<t47 B, 1, t5>)>

75

Man-in-the-Middle-Attack by the Intruder (Mallory)

Notice that by eavesdropping, Mallory can collect messages of the form:

Ex((t1,a1,€e1,t2))

Attack

 For the first run, Mallory intercepts the initial message from Alice, stores it,
and resends it to Bob. While Bob responds, Mallory intercepts the message
from Bob, stores it, and resends it to Alice.

e For each of the next runs, Mallory intercepts the initial message from Alice.
Taking non-deterministically messages stored in his memory and composing
the following message below, Mallory sends it to Bob:

(Ex((to, @0, 0,t1)), Ex ({t1, 01,0, t2)), Exc ((t2, aa, €2, t3)), Ex ({ta, B, 1, t5))

* If Bob accepts this message and responds with a transformed one as
described in the protocol, then Mallory intercepts this new message from Bob,
stores it, and resends it to Alice.

76

Man-in-the-Middle-Attack by the Intruder (Mallory)

Lemma: Suppose that a term of the form below appears in the intruder
memory by active eavesdropping.

EK(<t7 <Q7 £>7 0, t/>)

Then there is a unique sequence of nonces to, t1,- - -, tn+2 and a chain of
terms from the adversary's memory:

EK(<t07$707t1>)7 EK(<t1,£IZ‘1,O,t2>),.... EK(<tj—17xj—1707tj>)7
EK(<tJ7<Q7xJ>7O7tJ+1>)7 EK(<tj—|—17wj—|—1707tj—|—2>)7'"7 EK(<tn733n707tn—|—1>)7
EK(<tn+17 Ba 17 tn+2>)

such that ,
tj — t, £ 4 :f, and tj_|_1 =1

and M leads from the empty initial configuration to the configuration where the

string £1X2 ...ZXj ...ZInIiswritten in cells 1,...,n on the tape, where the |-th
cell is scanned by M in state Q.

Theorem: There is a Dolev-Yao attack on the above protocol if and only if
the machine M terminates on the empty input.

77

Comparison with Related Work

Bound on
Sollie)) EEU @ Bound on the number Bounded
on the the number h b f llel M Protocol
size of of protocol LU T L ot parafie emory Theories
facts SESSIONS of nonces protocol Intruder
sessions
PSPACE-comple
te [Kanovich et Yes No No Yes Yes No
al]
DEXPTIME-com
plete [Durgin et Yes No Yes No No Yes
al]
NP-complete
[Amadio and No Yes Yes Yes No Yes
Lugiez]
NP-complete
for Progressing Yes Yes Yes Yes Yes No
[new]

78

Conclusions

* Balanced systems provide an intuitive restriction to the memory capabilities of agents:
each agent can store at any moment a bounded number of facts of bounded size;

» We provide a formalization for notion of freshness for balanced systems with balanced
actions that can create fresh values: a nonce uses the space previously used by the
updated value;

« We prove that in such systems the planning problem is PSPACE-complete;

» Returning to protocol security, we show that known protocol anomalies can also occur
when the intruder has bounded memory and that the secrecy becomes
PSPACE-complete;

* We showed that it is not possible to infer a computable upper bound on the Dolev-Yao's
memory from the memory bound of protocols, confirming thus the hardness of protocol
verification. This was done by a novel undecidability proof for the secrecy problem;

* We proposed a novel definition of Progressing Collaborative Systems for systems that
may create fresh values;

* We showed that the reachability problem for balanced Progressing Collaborative
Systems that can create fresh values is NP-complete.

Future work

* How to include Real Time into our model, and in particular find decidable fragments for
the reachability problem. Many distance bounding protocols mention real time and
are of great interest to protocol security community.

e Can our complexity results help the design of protocol verification tools? We
are currently using Maude.

 Enrich our intruder model to include new parameters, such as the number of
active concurrent protocol sessions, to provide richer quantitative measures of
security of a protocol;

* Investigate ways to lift the assumption that the size of facts is bounded,;

80

Related Work

* A. W. Roscoe. Proving security protocols with model checkers by data
iIndependence techniques, 1998.
« Harrison, Ruzzo, Ullman. On protection in operating systems, 1975.

 Amadio, Lugiez. On the reachability problem in cryptographic protocols, 2000.

« Amadio, Lugiez, Vanackere. On the symbolic reduction of processes with
cryptographic functions, 2003.

* Rusinowitch, Turuani. Protocol insecurity with a finite number of sessions and
composed keys is NP-complete, 2003.

* Chevalier, Kusters, Rusinowitch, Turuani. An NP decision procedure for
protocol insecurity with xor, 2003.

e Comon-Lundh, Shmatikov. Intruder deductions, constraint solving and
Insecurity decision in presence of exclusive or, 2003.

e Lam, Mitchell, Sundaram. A formalization of HIPAA for a medical messaging
system, 20009.

e Esparza, Nielsen. Decidability issues for Petri nets - a survey, 1994.

123

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Computer Security
	Protocol Security
	Run of protocol
	Correctness vs Security
	Needham-Schroeder Key Exchange
	Anomaly in Needham-Schroeder
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

